Nuclear Energy
News Type
News
Date
Paragraphs

The Fukushima Daiichi Nuclear Power Plant released particles containing radioactive cesium during the 2011 nuclear disaster. New research published in Science of the Total Environment shows that some particles were larger and contained much higher levels of activity than was previously known.

“This paper is part of a series of publications that provide a detailed picture of the material emitted during the Fukushima Daiichi reactor meltdowns,” said CISAC Co-Director Rod Ewing, the Frank Stanton Professor in Nuclear Security who collaborated with scholars from Japan, Finland, France, and the United Kingdom on this research.

“This is exactly the type of work required for remediation and an understanding of long-term health effects,” Ewing said.

The larger particles were found during a survey of surface soils 3.9 km north-northwest of reactor unit 1. Two of the 31 Cs-particles collected during the sampling campaign have given the highest ever particle-associated 134+137Cs activities for materials emitted from the Fukushima Daiichi Nuclear Power Plant (FDNPP).

The researchers used a combination of advanced analytical techniques (synchrotron-based nano-focus X-ray analysis, secondary ion mass spectrometry, and high-resolution transmission electron microscopy) to fully characterize the particles.

One particle, which was found to be an aggregate of smaller, “flakey” silicate nanoparticles, with a glass-like structure likely came from reactor building materials, which were damaged during the Unit 1 hydrogen explosion; then, as the particle formed, it likely adsorbed Cs that had had been volatized from the hot reactor fuel. The composition of the surface embedded micro-particles likely reflects the composition of airborne particles within the reactor building at the moment of the hydrogen explosion, thus providing a forensic window into the events of March 11, 2011.

Dr. Satoshi Utsunomiya at the University of Kyushu led the study. “The new particles from regions close to the damaged reactor provide valuable forensic clues,” he said. “They give snap-shots of the atmospheric conditions in the reactor building at the time of the hydrogen explosion and of the physio-chemical phenomena that occurred during reactor meltdown.”

“While ten years have passed since the accident, the importance of scientific insights has never been more critical,” Utsunomiya said. “Clean-up and repatriation of residents continues and a thorough understanding of the contamination forms and their distribution is important for risk assessment and public trust.”

Gareth Law at the University of Helsinki who worked on the study, said that ongoing clean-up and decommissioning efforts at the site face difficult challenges, particularly the removal and safe management of accident debris with very high levels of radioactivity. “Prior knowledge of debris composition can help inform safe management approaches,” he said.

Given the high radioactivity associated with the new particles, the project team was also interested in understanding their potential health and dose impacts. “Owing to their large size, the health effects of the new particles are likely limited to external radiation hazards during static contact with skin,” Utsunomiya said. “As such, despite the very high level of activity, we expect that the particles would have negligible health impacts for humans as they would not easily adhere to the skin. However, we do need to consider possible effects on the other living creatures such as filter feeders in habitats surrounding Fukushima Daiichi. Even though ten years have already passed, the half-life of 137Cs is ~30 years. So, the activity in the newly found highly radioactive particles has not yet decayed significantly. As such, they will remain in the environment for many decades to come, and this type of particle could occasionally still be found in radiation hot spots.”

Bernd Grambow, Chair of the Nuclear Waste Management at IMT Atlantique, said, “The present work, using cutting-edge analytical tools, gives only a very small insight in the very large diversity of particles released during the nuclear accident, much more work is necessary to get a realistic picture of the highly heterogeneous environmental and health impact.”

 

picture of man

Rodney Ewing

Co-director of the Center for International Security and Cooperation
See Profile

Read More

Location of Fukushima Daiichi Nuclear Power Plant and sampling location. OTZ and AQC stand for Ottozawa and aqua culture center in Okuma town, respectively.
Commentary

Fukushima Daiichi meltdowns released particulates with plutonium

A new study reveals particles that were released from nuclear plants damaged in the devastating 2011 Tohoku earthquake and tsunami contained small amounts of radioactive plutonium.
Fukushima Daiichi meltdowns released particulates with plutonium
Members of the IAEA fact-finding team in Japan visit the Fukushima Daiichi Nuclear Power Plant on 27 May 2011 to examine the devastation wrought by the 11 March earthquake and tsunami.
News

Fukushima five years later: CISAC nuclear expert offers three lessons from the disaster

Fukushima five years later: CISAC nuclear expert offers three lessons from the disaster
gettyimages nuclearsmokestacks1 7cnjkfma broe4a8wwlg q
Q&As

How did the Fukushima disaster affect air pollution?

How did the Fukushima disaster affect air pollution?
All News button
1
Subtitle

The Fukushima Daiichi Nuclear Power Plant released particles containing radioactive cesium during the 2011 nuclear disaster. New research published in Science of the Total Environment shows that some particles were larger and contained much higher levels of activity than was previously known.

Authors
Siegfried S. Hecker
Alla Kassianova
News Type
News
Date
Paragraphs

In a series of Bulletin articles in June 2019, young American and Russian professionals examined the future of global nuclear power. They made their case for nuclear power, driven by their concern about global climate change, and also identified the principal challenges that must be overcome. Safety of nuclear power was judged to be the major risk, followed by the risks of nuclear proliferation, security, and nuclear waste disposal, and the economic challenges to increased use of nuclear power, especially in the United States.

Read the rest at Bulletin of Atomic Scientists

All News button
1
Subtitle

Young American and Russian professionals examined three major nuclear accidents to assess the causes, responses and consequences. They worked across cultural and disciplinary divides and arrived at a common assessment: international cooperation is essential to ensure nuclear safety because one country’s nuclear accident is everyone’s.

Authors
News Type
Commentary
Date
Paragraphs

Believe it or not, there is an issue on which Donald Trump and Joe Biden agree: Both have announced their opposition to building an underground repository to permanently store nuclear waste at Yucca Mountain in Nevada. With the presidential candidates on record, it is time for everyone else to accept that Yucca Mountain is finally off the table, and for the United States to begin to seriously consider realistic alternatives for safely managing the more than 80,000 tons of spent nuclear fuel currently sitting at 72 operating and shut-down commercial nuclear reactor sites across the country.

Read the rest at Bulletin of Atomic Scientists

Hero Image
All News button
1
Subtitle

Both have announced their opposition to building an underground repository to permanently store nuclear waste at Yucca Mountain in Nevada. Now it's time for everyone else to accept that Yucca Mountain is off the table and for the United States to begin to consider realistic alternatives for safely managing spent fuel.

Paragraphs

A new study reveals particles that were released from nuclear plants damaged in the devastating 2011 Tohoku earthquake and tsunami contained small amounts of radioactive plutonium.

View full article

All Publications button
1
Publication Type
Journal Articles
Publication Date
Journal Publisher
Science of The Total Environment
Authors
Rodney C. Ewing
Authors
Maxime Polleri
News Type
Commentary
Date
Paragraphs

On the quiet Friday afternoon of March 11, 2011, Natsuo* was working in Fukushima, the capital city of Fukushima prefecture. At 2:46 p.m., a devastating earthquake of 9.0 magnitude hit the Pacific coast of Japan, where the prefecture of Fukushima is situated. Natsuo recalled to me the sheer power of this earthquake: “The whole office shook like hell, everything began to fall from the walls. I thought to myself ‘That’s it … I’m going to die!’”

Natsuo quickly returned to her hometown of Koriyama City, unaware that the earthquake had triggered a massive tsunami, which inundated an important part of the prefectural shoreline and ultimately claimed the lives of nearly 20,000 people. On top of the initial devastation, the tsunami severely damaged the Fukushima Dai’ichi Nuclear Power Plant, in Ōkuma, Fukushima, located on the east coast of Fukushima prefecture. She later learned on TV that something “seemed wrong” with the nuclear power plant. “During that time,” she said, “I tried to get as much information as I could, but the media weren’t being clear on the situation.”

Read the rest at Sapiens

All News button
1
Subtitle

An anthropologist explores the network of citizen monitoring capabilities that developed after the Fukushima nuclear disaster in Japan in 2011 for what they might teach all of us about such strategies for the covonavirus pandemic.

Authors
Rodney C. Ewing
News Type
Commentary
Date
Paragraphs

Nearly ten years after meltdown at the Fukushima Daiichi Nuclear Power Plant caused a nuclear disaster, researchers have uncovered important new information about the extent and severity of the meltdown and the distribution patterns of the plutonium that have broad implications for understanding the mobility of plutonium during a nuclear accident.

According to a paper published July 8 in Science of the Total Environment, microscopic particles emitted during the disaster contained not only high concentrations of radioactive cesium, as previously reported, but also the toxic metal plutonium. These microscopic radioactive particles formed inside the Fukushima reactors when the melting nuclear fuel interacted with the reactor’s structural concrete.

“The study used an extraordinary array of analytical techniques in order to complete the description of the particles at the atomic-scale,” said Rod Ewing, co-director of the Center for International Security and Cooperation (CISAC) at Stanford University.

Ewing collaborated with researchers from Kyushu University, University of Tsukuba, Tokyo Institute of Technology, National Institute of Polar Research, University of Helsinki, Paul Scherrer Institute, Diamond Light Source and SUBATECH (IMT Atlantique, CNRS, University of Nantes).

The researchers found that, due to loss of containment in the reactors, the particles were released into the atmosphere and many were then deposited many kilometers from the reactor sites. Studies have shown that the cesium-rich microparticles, or CsMPs, are highly radioactive and primarily composed of glass (with silica from concrete) and radio-cesium (a volatile fission product formed in the reactors). But the environmental impact and their distribution is still an active subject of research and debate. The new work offers a much-needed insight into the Fukushima Daiichi Nuclear Power Plant, (FDNPP) meltdowns.

Geochemist Satoshi Utsunomiya and graduate student Eitaro Kurihara of Kyushu University led the team that used a combination of advanced analytical techniques, including synchrotron-based micro-X-ray analysis, secondary ion mass spectrometry, and high-resolution transmission electron microscopy, to find and characterize the plutonium that was present in the CsMP samples. The researchers initially discovered incredibly small uranium-dioxide inclusions, of less than 10 nanometers in diameter, inside the CsMPs; this indicated possible inclusion of nuclear fuel inside the particles.

Detailed analysis revealed, for the first-time, that plutonium-oxide concentrates were associated with the uranium, and that the isotopic composition of the uranium and plutonium matched that calculated for the FDNPP irradiated fuel inventory.

“These results strongly suggest that the nano-scale heterogeneity that is common in normal nuclear fuels is still present in the fuel debris that remains inside the site’s damaged reactors,” said Utsunomiya. “This is important information as it tells us about the extent [and] severity of the meltdown. Further, this is important information for the eventual decommissioning of the damaged reactors and the long-term management of their wastes.”

With regards to environmental impact, Utsunomiya said, “as we already know that the CsMPs were distributed over a wide region in Japan, small amounts of plutonium were likely dispersed in the same way.”

Gareth T. W. Law, a co-author on the paper from the University of Helsinki, said the team “will continue to experiment with the CsMPs, in an effort to better understand their long-term behavior and environmental impact. It is now clear that CsMPs are an important vector of radioactive contamination from nuclear accidents.”

Bernd Grambow, a coauthor from Nantes/France, said, “While the plutonium released from the damaged reactors is low compared to that of cesium; the investigation provides crucial information for studying the associated health impact.”

Utsunomiya emphasized that this is a great achievement of international collaboration. “It’s been almost ten years since the nuclear disaster at Fukushima,” he said, “but research on Fukushima’s environmental impact and its decommissioning are a long way from being over.”

 

Ewing is also the Frank Stanton Professor in Nuclear Security, a Senior Fellow of the Precourt Institute for Energy, Senior Fellow at the Freeman Spoglie Institute for International Studies and. Professor of Geological Sciences in Stanford’s School of Earth, Energy & Environmental Sciences (Stanford Earth). Co-authors of the paper include Eitaro Kurihara, Masato Takehara, Mizuki Suetake, Ryohei Ikehara, Tatsuki Komiya, Kazuya Morooka, Ryu Takami, Shinya Yamasaki, Toshihiko Ohnuki, Kenji Horie, Mami Takehara, Gareth T. W. Law, William Bower, J. Frederick. W. Mosselmans, Peter Warnicke, Bernd Grambow, Rodney C. Ewing, and Satoshi Utsunomiya

 

Integration of analytical techniques was accomplished through an international network that included Kyushu University, University of Tsukuba, Tokyo Institute of Technology, National Institute of Polar Research, University of Helsinki, Paul Scherrer Institute, Diamond Light Source, SUBATECH (IMT Atlantique, CNRS, University of Nantes) and Stanford University.  

 

This article was adapted from a press release produced by Kyushu University.

 

Read Particulate plutonium released from the Fukushima Daiichi meltdowns

 

Media contacts:

Josie Garthwaite

School of Earth, Energy & Environmental Sciences

(650)497-0949, josieg@stanford.edu

 

Jody Berger

Center for International Security and Cooperation

(303)748-9657, jody.berger@stanford.edu

Hero Image
All News button
1
Subtitle

A new study reveals particles that were released from nuclear plants damaged in the devastating 2011 Tohoku earthquake and tsunami contained small amounts of radioactive plutonium.

Authors
Lindsay Krall
News Type
Commentary
Date
Paragraphs

In the budding days of the COVID-19 pandemic, President Trump idled his days away, launching random tweets about unrelated issues. One such issue was nuclear waste disposal: “Nevada, I hear you on Yucca Mountain…my Administration is committed to exploring innovative approaches – I’m confident we can get it done!”

After this particular proclamation, the nuclear expert community was left scratching its collective head. Does the president support Yucca Mountain as an eventual nuclear waste repository, or does he not? And, more puzzling, what “innovative approaches” for nuclear waste does he have in mind? Maybe he was thinking about the “waste eating” advanced reactors promoted by the US Energy Department and the private sector; maybe he was thinking about reprocessing spent nuclear fuel; or maybe he was thinking about deep boreholes for permanent waste storage.

 

Read the rest at the Bulletin

All News button
1
-

Seminar Recording: https://youtu.be/8JDHuY0HMCM

 

Abstract: The motivation to develop nuclear energy waned in the latter part of the twentieth century. Technologies such as very-high-temperature gas-cooled reactors and fast-neutron liquid-metal reactors had been pursued for the purpose of recycling used nuclear fuel from water-cooled reactors, or for the purpose of supplying high-temperature process heat to the chemical industry or for hydrogen production. While both worthwhile causes, one could argue that the important missing element of all of these advanced nuclear reactor technologies was a business case: how were nuclear power plants to be profitable? With the more widely recognized need for decarbonizing energy production, the new driver for developing nuclear energy became cost. Can nuclear power be economically competitive with natural gas and coal, in order to provide an economic driver for the displacement of fossil fuel? This became the new motivation for nuclear energy development in the twenty-first century, and over the last decade the unthinkable happened: a growing and striving ecosystem of nuclear energy start-up companies. Many of these start-up companies pursue the development of liquid-fuel molten salt reactors, fueled by thorium or uranium fuel. Other start-up companies develop solid-fuel reactors cooled by salt, or even fusion reactors cooled by salt. The common feature of nuclear reactors that utilize molten salt is the operation at high-temperature and atmospheric pressure. The high temperature leads to doubled power efficiencies, compared to conventional water-cooled reactors. The atmospheric pressure leads to a safety case that is arguably easier to demonstrate, and hence that would enable a faster commercialization time.  On the other hand, there remain many technical risks and time-line uncertainties for the development of salt nuclear technologies. There remain also questions of policy, licensing, and compatibility with local industry and local culture, necessary elements for the global development of such nuclear reactors. This talk will explore some of the challenges faced by the global deployment of molten-salt and salt-cooled reactors, and some of the challenges faced by nuclear start-up companies in order to change the innovation cycle for nuclear energy technology from thirty years to a much shorter time frame.

 

 

Speaker's Biography:

Image
screen shot 2019 10 03 at 1 23 12 pm
Raluca Scarlat is an assistant professor at UC Berkeley, in the Department of Nuclear Engineering. Raluca Scarlat’s research focuses on chemistry, electrochemistry and physical chemistry of high-temperature inorganic fluids and their application to energy systems. Her research includes safety analysis, licensing and design of nuclear reactors and engineering ethics, and she has extensive experience in design and  safety analysis of fluoride-salt-cooled high-temperature reactors (FHRs) and Molten Salt Reactors (MSRs). Professor Scarlat has a Ph.D. in Nuclear Engineering from UC Berkeley, a certificate in Management of Technology from the Hass School of Business, and a B.S. in Chemical and Biomolecular Engineering from Cornell University. Scarlat has published articles in Electrochemical Society Journal, Journal of Fluorine Chemistry, Journal of Nuclear Materials, Nuclear Engineering and Design, Nuclear Instruments and Methods, Journal of Engineering for Gas Turbines and Power, Nuclear Technology, and Progress in Nuclear Energy.

Raluca Scarlat UC Berkeley
Seminars
Authors
News Type
Q&As
Date
Paragraphs

North Korea currently has only one publicly known uranium mine—the Pyongsăn uranium mining and milling complex—that serves as a first step in the country’s pathway towards nuclear weapons.

Using a combination of multispectral imagery sourced from the European Space Agency’s Copernicus Sentinel-2 satellite and a review of geological analyses dating back to 1955, a new study from Stanford’s Center for International Security and Cooperation (CISAC) in Jane’s Intelligence Review by geological sciences postdoctoral fellow Sulgiye Park (PhD ’17) and CISAC honors student Federico Derby (BS ’19) looks for evidence of uranium mining in North Korea, going beyond what is currently available in open sources in order to estimate the uranium resources and their locations in North Korea.

The peer-reviewed CISAC study has identified around 18 additional sites in North Korea where the hyperspectral signatures and geological profile combine to suggest the possibility of uranium mining. Nevertheless, CISAC and Jane’s stress that the presence of these ‘hotspots’ does not imply the presence of an active uranium mine or related facility, but rather a site that warrants further analysis.

In this Q&A with Katy Gabel Chui, researchers Sulgiye Park and Federico Derby discuss their work on the project:

How did you land on this project? What made you think to look for more mining sites?

Sulgiye Park (SP) and Federico Derby (FD): Very little is known about the front-end of North Korea’s nuclear fuel cycle, particularly when it comes to the mining and milling processes of uranium production pathway. To date, assessments of this portion of North Korea’s nuclear fuel cycle have been mostly conducted through traditional (electro-optical) satellite imagery observations---the type of imagery that you can access through Google Earth, for instance.

We wanted to get a more complete grasp of North Korea's uranium mining and processing capacity by conducting a multi-disciplinary approach that combines both the visible signatures from multi-spectral satellite imagery and a geological dataset that contains information such as mineralogy and geochemistry. The two individual methods come together at the end to provide information that encapsulates the potential regions likely to host uranium deposits and mines.

What is multispectral imaging? How would it ordinarily be used, and how did you use it for this project?

SP and FD: Traditional electro-optical satellite imagery exploits only three portions of the electromagnetic spectrum; namely, the blue, green and red bands. In general, when using the term “multispectral” within the satellite imagery community, we are usually referring to a satellite system that covers a few to tens of different bands in the electromagnetic spectrum.

Multispectral imagery is used in a wide variety of industries, to measure things like water turbidity, crop healthiness, vegetation quality, etc. For this project, we focused on using spectral fingerprints. Basically, every object – whether it be a mineral, a living thing, water, etc. – has a(n in theory unique) spectral fingerprint. Spectral fingerprints are measured as the intensity of the object’s reflectance of light at a specific wavelength. Varying across wavelengths – hence the importance of having a multispectral system that can give you access to different ranges of the electromagnetic spectrum – you ultimately get a spectral curve that is unique to the item you are studying.

The spectral fingerprints you collect on a specific image can be compared to previously collected fingerprints stored in what is usually termed a spectral library, for classification purposes. Basically, if my spectral curve of a given pixel (or set of pixels) looks super similar to that of gold (for which I obtained a reference spectral curve from a spectral library), then it is probably gold. Obviously, this matching is performed in a more rigorous manner, but you get the idea of how the process works.

In this project, we used the Pyongsan uranium mine in North Korea (arguably the only well-identified uranium mine in the country) as my reference spectral curve. Essentially, using various imaging techniques, we traversed North Korea looking for pixels whose spectral curves are similar to that of the Pyongsan uranium mine. Those are the ‘hotspots’ we identified.

What most surprised you in both your work and your findings?

SP and FD: The fascinating match between the 'hotspots' identified through satellite imagery analysis and the geologic information available in maps and reports. The majority of the 'hotspots' appeared adjacent to the limestone formation from the Ordovician period (circa 445-485 Ma) that are in contact with a specific sedimentary rocks of upper Proterozoic group. Part of the geologic characteristics of the 'hotspots' regions were similar to what had been observed in the Pyongsan (the most well-known) uranium mine of North Korea.

What was most surprising in the work itself? What was difficult in doing the work?

SP and FD: It was surprising to see how much we still don't know about North Korea despite the amount of effort that had been invested. There is no consensus reached regarding the location and the total number of uranium mines in North Korea.

One of the bigger difficulties we had was finding credible geological data and information.

What is the one thing you think someone should take away from your study?

SP and FD: That there are still many unknowns. While our study identified multiple regions with spectral signatures similar to the uranium tailing piles at Pyongsan, verification of uranium presence is still needed.

What are you working on next?

SP: I am still working on using a geologic approach to glean information on the uranium mines of North Korea. The further evaluation aims to identify a qualitative upper limit of uranium ore grade (quality) and quantity pertaining to all the suspected uranium mines in North Korea.

FD: I co-founded a startup focused on developing deep learning models for credit risk analytics (in Latin America). However, I will still keep in touch with my CISAC peers!

 

Hero Image
All News button
1
Authors
Azby Brown
News Type
Q&As
Date
Paragraphs

This piece originally appeared at Safecast.

Image
csmp 01 2

Image above: Secondary electron images from Utsunomiya et al. 2019, of CsMPs discovered in atmospheric particles trapped on a Tokyo air filter from March 15, 2011, with major constituent elements displayed. Via Safecast

 

An interesting paper  was recently published by a team headed by Dr. Satoshi Utsunomiya of Kyushu University on the subject of Fukushima-derived cesium-enriched microparticles (CsMPs). As many readers will know, several researchers have located and analyzed these microparticles, in which the cesium is often bonded within glass-like silicates and therefore generally significantly less soluble than other Cs chemical species in water, though technically not actually “insoluble.” After an accident like Fukushima, it is much more common to find cesium in water-soluble compounds like cesium hydroxide (CsOH), and predictions about how quickly the cesium will be dispersed through the environment, in soil, in watersheds, taken up by plants and animals, etc, are based primarily on this assumption. The discovery of sparingly-soluble Fukushima-derived cesium microparticles, first documented by Adachi et al in 2013, and since then confirmed by many others, has raised a number of questions. How abundant are they? Does their presence increase health risk to humans? How much do they reveal about the process of the accident itself? From the standpoint of researchers the microparticles are very intriguing.

Utsunomiya et al.’s paper is titled “Caesium fallout in Tokyo on 15th March, 2011 is dominated by highly radioactive, caesium-rich microparticles,” and as noted in a recent Scientific American article, it was originally accepted for publication in 2017 by Scientific Reports journal. Weeks before publication, however, Tokyo Metropolitan Industrial Technology Research Institute (TIRI), operated by the Tokyo Metropolitan Government, raised objections with Scientific Reports. However no questions about the quality of the science or the validity of the paper’s findings appear to have been brought forward. This in itself was highly irregular. Two years elapsed without resolution, and in March of this year Scientific Reports took the highly unusual step of withdrawing its offer to publish the paper, despite the lack of confirmed evidence that would warrant it. Utsunomiya and several co-authors decided that the best course of action was to place the study in the public domain by publishing it via arXiv, a highly respected pre-print website. The paper is now open and free to download

This study makes a valuable contribution to the body of scientific literature regarding the consequences of the Fukushima disaster in general and CsMPs in particular. I think it was a mistake for Scientific Reports not to publish it two years ago, especially considering the rapid pace of research into these particles and the tremendous interest in them. To summarize the findings briefly, the researchers analyzed air filter samples from March 15, 2011, in Setagaya, Tokyo, when the radioactive plume from Fukushima caused a noticeable peak in airborne radioactivity in the city. The researchers used radiographic imaging (placing the filters on a photographic plate) to identify any highly radioactive spots. Using these images as a guide they were able to isolate seven CsMPs, which they subjected to atomic-scale analysis using high-resolution electron microscopy (HRTEM) to identify their nano-scale structure and chemical composition. Based on these detailed measurements and quantitative analysis, the researchers concluded that 80-89% of the total cesium fallout in Tokyo that day was in the form of highly radioactive microparticles. The second half of the paper is devoted to estimates of how long such particles might be retained in the human lungs if inhaled, based on previous studies that reported the effects of inhalation of non-radioactive atmospheric particles, and some possible physical consequences. The paper is valuable for the quantitative analysis of the Tokyo particles alone, since it is one of few studies that deal with the issue for Tokyo specifically. Research into possible health consequences of the particles, meanwhile, has gained momentum while the paper remained unpublished, using approaches such as stochastic biokinetics, and DNA damage studies.  In a recent paper, Utsunomiya and colleagues produced estimates of the rate of dissolution of the particles inside the human lung, in pure water, and in seawater. A working group at the Japan Health Physics Society has also devoted attention to the issue, noting the need for further study of the risk from intake of these particles, particularly to the lung.  Likewise, others have been studying the particles to learn about the accident progression and possible consequences for decommissioning.

Why did Tokyo Metropolitan Industrial Technology Research Institute object to the paper’s publication? When we first heard that publication of the paper was being held up by Tokyo Metropolitan Government, we thought politically-motivated suppression was a likely explanation. Since then the public has learned that the actual complaint given to Scientific Reports stems from a chain of custody issue of the original air filter samples. We don’t want to speculate further about Tokyo’s motivation, because we have seen no direct evidence yet of political suppression in this case. But based on past occurrences with other government institutions, we would find it plausible. We will let readers know if TIRI responds to our inquiries.

We spoke with Dr. Utsunomiya and co-author Dr. Rodney Ewing recently. I was aware of their co-authorship of several strong papers on CsMPs, including Utsunomiya’s plenary talk at the Goldschmidt Conference in Yokohama in 2016, which I attended. I asked how this new arXiv paper fits in with their other papers, and where they think this research is heading next:


Satoshi Utsunomiya:

Thank you for asking. The Tokyo paper was actually our first paper regarding CsMPs. As I mentioned, the paper was accepted two years ago. There were no previous papers of ours on CsMPs that time. Currently we are working on several topics on CsMPs. I cannot reveal the content yet, as we are thinking about a press release for the next paper. But I think it is important to continue this kind of research, providing some insights for decommissioning at Fukushima Daiichi Nuclear Power Plant.

Azby Brown:

I didn’t realize that this was your first paper on the subject.  How does it relate to the one presented at the Goldschmidt Conference in Yokohama in 2016? “Cesium-Rich Micro-Particles Unveil the Explosive Events in the Fukushima Daiichi Nuclear Power Plant.” Didn’t that paper receive a prize?

SU:

My talk at Goldschmidt briefly covered the story described in the two papers that were accepted for publication at the same time. One was published in Scientific Reports. The other one was not published. There was no prize. It was a plenary talk.

AB:

I see. I recall that it received a lot of attention. Now it makes more sense to me.

Can you tell me a little bit about the specific characteristics and focus of your research, and how it differs from papers like Adachi 2013Abe 2014, etc? Generally speaking, that is. I’d like to help people understand the different aspects of the field.

SU:

Adachi reported the discovery of CsMPs. Abe demonstrated X-ray absorption analysis on the CsMPs. We focused on the nanotexture inside CsMPs. We are particularly interested in the detailed evidence remaining within the microparticle, which can provide useful information on the development of the chemical reactions during the meltdowns, because it is still difficult to directly analyze the materials inside the reactors. We, for the first time, succeeded in performing isotopic analysis on individual CsMPs. More specifically, the occurrence of uranium can directly tell the story of how the fuel melted. Our research has two directions: one is to understand the environmental impact of CsMPs, and the other is to provide useful information on the debris properties to help decommissioning at FDNPP. We are also interested in the implications for health.

AB:

Can you tell me a little bit about your working relationship? Satoshi went to the US to work in your lab, right Rod? When was that, and what were you working on?

Rod Ewing:

Satoshi and I have known each other since 2000, when he joined my research group as a post-doctoral fellow at the University of Michigan. He was a member of the research group until 2007. We collaborated on a wide range of topics that had to do with radioactive materials, such as the transport of plutonium at the Mayak site in Russia to the identification of uranium phases within C60 cages, so called buckyballs, that were formed and released from coal power plants. Once Satoshi returned to Japan to take his position at Kyushu University, we continued to collaborate, particularly on topics related to Fukushima Daiichi.

AB:

How did you both get interested in CsMPs?

RE:

Once discovered, CsMPs were clearly of high interest. They had not been noted in earlier reactor accidents. Satoshi is a master with the transmission electron microscope – exactly the tool/technique needed to study these particles.

AB:

For people who aren’t familiar with what’s involved in a research experiment like yours, can you describe the overall process? What were the technical challenges?

RE:

I would just emphasize that it is very difficult to find and characterize these particles. Considering the full literature and efforts by others as well as our team – the results are impressive. It is rare to have both the TEM characterization and the isotopic data.

SU:

As Rod mentioned, it is difficult to obtain both TEM and isotopic data from a few micron-sized spots. The isolation of CsMPs from soils is a time consuming process. But to date, many scientists have found and isolated CsMPs. The important thing is what information we can obtain from the analysis of CsMPs. We have been taking various approaches to elucidate the properties, environmental impact, and the role in releasing fissile actinides to the environment.    


As described above, many papers examining various aspects of Fukushima-derived cesium microparticles have been published since they were first identified in 2013. Even so, important aspects remain only partially documented and understood to date. Below is a partial list of relevant publications.

Papers mentioned in this article:

Caesium fallout in Tokyo on 15th March, 2011 is dominated by highly radioactive, caesium-rich microparticles

Utsunomiya, et al., 2019

https://arxiv.org/abs/1906.00212

—————————————————————-

Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident

Adachi et al., 2013

http://www.nature.com/articles/srep02554

—————————————————————-

Detection of Uranium and Chemical State Analysis of Individual Radioactive Microparticles Emitted from the Fukushima Nuclear Accident Using Multiple Synchrotron Radiation X-ray Analyses

Abe et al., 2014

http://pubs.acs.org/doi/abs/10.1021/ac501998d

—————————————————————-

Dissolution of radioactive, cesium-rich microparticles released from the Fukushima Daiichi Nuclear Power Plant in simulated lung fluid, pure-water, and seawater

Suetake et al., 2019

https://doi.org/10.1016/j.chemosphere.2019.05.248

—————————————————————-

Development of a stochastic biokinetic method and its application to internal dose estimation for insoluble cesium-bearing particles

Manabe & Matsumoto, 2019

https://doi.org/10.1080/00223131.2018.1523756

—————————————————————-

DNA damage induction during localized chronic exposure to an insoluble radioactive microparticle

Matsuya et al., 2019

https://doi.org/10.1038/s41598-019-46874-6

—————————————————————-

Provenance of uranium particulate contained within Fukushima Daiichi Nuclear Power Plant Unit 1 ejecta material

Martin et al., 2019

https://www.nature.com/articles/s41467-019-10937-z

—————————————————————-

Internal doses from radionuclides and their health effects following the Fukushima accident

Ishikawa et al., 2018

https://iopscience.iop.org/article/10.1088/1361-6498/aadb4c

 



Related papers (by year of publication):

Characteristics Of Spherical Cs-Bearing Particles Collected During The Early Stage Of FDNPP Accident

Igarashi et al., 2014

http://www-pub.iaea.org/iaeameetings/cn224p/Session3/Igarashi.pdf

—————————————————————-

Radioactive Cs in the severely contaminated soils near the Fukushima Daiichi nuclear power plant

Kaneko et al., 2015

https://www.frontiersin.org/articles/10.3389/fenrg.2015.00037

—————————————————————-

First successful isolation of radioactive particles from soil near the Fukushima Daiichi Nuclear Power Plant

Satou et al., 2016

http://www.sciencedirect.com/science/article/pii/S2213305416300340

—————————————————————-

Internal structure of cesium-bearing radioactive microparticles released from Fukushima nuclear power plant

Yamaguchi et al., 2016

http://www.nature.com/articles/srep20548

—————————————————————-

Three-Year Retention Of Radioactive Caesium In The Body Of Tepco Workers Involved In The Fukushima Daiichi Nuclear Power Station Accident

Nakano et al., 2016

http://rpd.oxfordjournals.org/content/early/2016/03/14/rpd.ncw036

—————————————————————-

Monte Carlo Evaluation of Internal Dose and Distribution Imaging Due to Insoluble Radioactive Cs-Bearing Particles of Water Deposited Inside Lungs via Pulmonary Inhalation Using PHITS Code Combined with Voxel Phantom Data

Sakama, M. et al., 2016

https://link.springer.com/chapter/10.1007/978-4-431-55848-4_19

—————————————————————-

Radioactively-hot particles detected in dusts and soils from Northern Japan by combination of gamma spectrometry, autoradiography, and SEM/EDS analysis and implications in radiation risk assessment

Kaltofen & Gundersen, 2017

https://www.sciencedirect.com/science/article/pii/S0048969717317953?via%3Dihub

—————————————————————-

Caesium-rich micro-particles: A window into the meltdown events at the Fukushima Daiichi Nuclear Power Plant

Furuki et al., 2017

https://www.nature.com/articles/srep42731

—————————————————————-

Isotopic signature and nano-texture of cesium-rich micro-particles: Release of uranium and fission products from the Fukushima Daiichi Nuclear Power Plant

Imoto et al., 2017

https://www.nature.com/articles/s41598-017-05910-z

—————————————————————-

Uranium dioxides and debris fragments released to the environment with cesium-rich microparticles from the Fukushima Daiichi Nuclear Power Plant

Ochiai et al., 2018

https://pubs.acs.org/doi/abs/10.1021/acs.est.7b06309

—————————————————————-

Novel method of quantifying radioactive cesium-rich microparticles (CsMPs) in the environment from the Fukushima Daiichi nuclear power plant

Ikehara et al., 2018

https://pubs.acs.org/doi/full/10.1021/acs.est.7b06693

—————————————————————-

Formation of radioactive cesium microparticles originating from the Fukushima Daiichi Nuclear Power Plant accident: characteristics and perspectives

Ohnuki, Satou, and Utsunomiya, 2019

https://www.tandfonline.com/doi/abs/10.1080/00223131.2019.1595767

 

 

 

Hero Image
All News button
1
Subscribe to Nuclear Energy