Human vs. Machine: Behavioral Differences Between Expert Humans and Language Models in Wargame Simulations

Human vs. Machine: Behavioral Differences Between Expert Humans and Language Models in Wargame Simulations

Abstract: To some, the advent of artificial intelligence (AI) promises better decision-making and increased military effectiveness while reducing the influence of human error and emotions. However, there is still debate about how AI systems, especially large language models (LLMs), behave compared to humans in high-stakes military decision-making scenarios with the potential for increased risks towards escalation and unnecessary conflicts. To test this potential and scrutinize the use of LLMs for such purposes, we use a new wargame experiment with 107 national security experts designed to look at crisis escalation in a fictional US-China scenario and compare human players to LLM-simulated responses in separate simulations. Wargames have a long history in the development of military strategy and the response of nations to threats or attacks. Here, we show a considerable high-level agreement in the LLM and human responses and significant quantitative and qualitative differences in individual actions and strategic tendencies. These differences depend on intrinsic biases in LLMs regarding the appropriate level of violence following strategic instructions, the choice of LLM, and whether the LLMs are tasked to decide for a team of players directly or first to simulate dialog between players. When simulating the dialog, the discussions lack quality and maintain a farcical harmony. The LLM simulations cannot account for human player characteristics, showing no significant difference even for extreme traits, such as "pacifist" or "aggressive sociopath". Our results motivate policymakers to be cautious before granting autonomy or following AI-based strategy recommendations.

Read the full article here.